Cardiorenal syndrome (CRS) is a group of diagnoses defined as disorders of the heart and kidney whereby dysfunction in one organ induces or worsens dysfunction in the other. The umbrella term and discrete subtypes (Box 1) were developed by the Acute Dialysis Quality Initiative (ADQI) to emphasize the bidirectional pathways and provide context for identifying the complex pathophysiologic interactions that occur in disorders that involve both the heart and kidney.1

Despite advances in the treatment of both cardiovascular and kidney disease, CRS remains a major health problem. Cardiovascular disease (CVD) is one of the most common causes of death2; in 2011, the US Centers for Disease Control and Prevention reported that nearly 25% of all deaths in the general population were due to the disease.3 Reduced kidney function is associated with an increased risk for cardiovascular events and mortality compared with that of the general population,4 with incrementally increased risk as glomerular filtration rate declines.5,6 According to the US Renal Data System, CVD is the most common cause of death in the setting of end-stage renal disease.7 Of note, individuals with stage 3 chronic kidney disease (CKD) are more likely to die of CVD than to progress to end-stage renal disease.8 Furthermore, patients with combined cardiovascular and kidney disease are at much higher risk of mortality than patients with either in isolation.9

Since Lindner et al10 first described the association between end-stage renal disease and CVD, a number of community-based studies, national databases, pooled analyses, and therapeutic intervention trials have sought to validate the complex relationship between CKD and atherosclerotic CVD.7,11-15 However, data specific to heart failure may be of greater value: a recent meta-analysis by Damman et al16 indicated that the prevalence of CKD in patients with heart failure is >30% and is associated with an odds ratio for all-cause mortality of 2.34 (95% confidence interval [CI], 2.20-2.50).

It appears that multiple mechanisms underlie CRS, and an extensive body of literature has focused on neurohormonal mechanisms and hemodynamic alterations (reviewed in Bock and Gottlieb17). Given that abnormalities in iron, the bone-mineral axis, and anemia are frequent complications of uremia (and that the management of CKD frequently involves interventions directed at these parameters), the goal of this
article is to review the potential role of these factors in the pathogenesis and possible future prevention of chronic CRS (types 2 and 4).

BIOCHEMICAL ABNORMALITIES IN CKD

Bone-Mineral Axis

Deterioration in mineral homeostasis is progressive as kidney function declines, causing disruptions in serum and tissue concentrations of phosphate and calcium, as well as changes in circulating levels of hormones such as parathyroid hormone (PTH), vitamin D metabolites (calcidiol and calcitriol), and fibroblast growth factor 23 (FGF-23; Fig 1). As early as CKD stage 3, the kidneys show a reduced ability to appropriately excrete phosphate, eventually resulting in hyperphosphatemia, which triggers elevations in PTH and FGF-23 concentrations. Further, impaired conversion of calcidiol to calcitriol reduces intestinal calcium absorption and increases PTH levels. Because the kidney is unable to respond adequately to PTH, phosphaturia and calcium reabsorption are compromised. In addition, the kidney does not respond to FGF-23 secreted by bone, further reducing phosphate excretion and enhancing phosphate retention.18

Disruptions in the mineral and endocrine function associated with CKD are vital in controlling bone modeling and remodeling; thus, bone abnormalities are nearly ubiquitous in patients with dialysis-dependent CKD and biochemically detectable in the majority of patients with CKD stages 3 to 5.19

Iron

Because excess iron is capable of generating free radicals that are damaging to lipid membranes, proteins, and nucleic acids, circulating iron concentrations are tightly regulated. Hepcidin is a key mediator, regulating iron stores by binding and inducing internalization and degradation of ferroportin, an iron export protein. A genetic absence of hepcidin results in unchecked iron absorption by the ferroportin channels and the clinical syndrome of hemochromatosis.20 In chronic disease, hepcidin is produced at greater levels and reduces the amount of iron absorbed from the gastrointestinal tract and also traps iron in the liver and bone marrow macrophages, thereby restricting iron trafficking throughout the body, particularly in the bone marrow. Hence, both intestinal iron absorption and iron release are decreased; as such, circulating iron concentrations and iron availability to target tissues are decreased as well.21 In patients receiving dialysis, iron homeostasis is disrupted further by negative iron balance (due to blood losses from dialysis and repeated phlebotomy), depleted iron stores (resulting from increased production of red blood cells during treatment with erythropoiesis-stimulating agents [ESAs]), and impaired intestinal absorption of dietary iron (due to relative achlorhydria).22

Anemia

Reduced synthesis of erythropoietin (EPO; 90% of which is produced in the kidneys; 10%, in liver and other organs) is considered an important cause of...
anemia in CKD. The main stimulus for EPO production is renal hypoxia, but this mechanism is impaired in patients with CKD. As kidney function declines, decreases in EPO are accompanied by a decrease in available iron (as previously described), which further hinders erythropoiesis, proliferation of erythroid precursors, and the production of EPO and EPO receptors. Finally, abnormalities in the availability of iron, excessive levels of inflammation, disturbance in bone and mineral homeostasis, and other factors appear to decrease bone marrow responsiveness to EPO, further exacerbating anemia as CKD progresses.

Thus, the anemia of CKD, including in those with chronic dialysis dependent kidney failure, can be characterized by elevated hepcidin levels, impaired iron absorption and transport, reduced or inappropriately low levels of and response to EPO, and (in patients treated with hemodialysis) excess blood losses.

Relationship Between the Bone-Mineral Axis and Iron

Data for possible relations between the bone-mineral axis and iron are derived from associations between hypophosphatemia and stimulated erythropoiesis in some hematopoietic disorders, as well as after intravenous iron infusion. Iron-induced hypophosphatemia may result from increased cellular uptake of phosphate during erythropoiesis, but renal phosphate wasting appears to be an important mechanism of iron-induced hypophosphatemia. Clinical data have shown that administering saccharated ferric oxide or iron polymaltose results in impaired tubular phosphate handling (reabsorption). In addition to renal phosphate loss, there is also evidence for inhibition of renal 1α-hydroxylase activity and decreased 1,25-dihydroxyvitamin D concentrations. Patients receiving dialysis or with earlier stages of CKD, effects of iron administration on FGF-23 levels are inconsistent. In patients with non-dialysis-dependent CKD, ferric carboxymaltose induces a reduction in serum phosphate concentrations that persists for 3 months, together with a significant decrease in FGF-23 concentrations (though other bone metabolism parameters are unaffected). In patients treated with hemodialysis, intravenous saccharated ferric oxide increases already elevated FGF-23 concentrations without inducing hypophosphatemia and inappropriately low 1,25-dihydroxyvitamin D concentrations in the absence of functioning kidney tissue. However, these findings have not been reported consistently and could vary according to the iron preparation used.

Intravenous iron administration also may result in transient PTH suppression, most likely through its effects on FGF-23 and vitamin D by acting directly on the parathyroid. In a recent study, Bacchetta et al. 37 explored the possibility of a direct role for vitamin D in iron homeostasis. They found that supplementation with a single oral dose of vitamin D in healthy volunteers was associated with a 34% reduction in circulating hepcidin levels within 24 hours. Based on these results, Bacchetta et al. 37 suggested that vitamin D is a key regulator of the hepcidin-ferroportin axis and highlighted vitamin D supplementation as a potential means of managing anemia in patients with low vitamin D levels and/or CKD.

ROLE OF CKD-ASSOCIATED BIOCHEMICAL ABNORMALITIES IN THE PATHOGENESIS OF CRS

Role of Phosphorus and Calcium

The altered metabolism of phosphate, vitamin D3, and iron in CKD are likely to have important contributing roles in the pathogenesis of impaired myocardial and vascular function and the development of chronic CRS. Experimental evidence indicates that high extracellular phosphate concentrations alter endothelial function and are toxic to vascular endothelial cells. This results in apoptosis and subsequent exposure of underlying smooth muscle cells to elevated phosphate levels and stimulation of Pit-1 (a receptor encoded by the SLC20A1 gene). The Pit-1 receptor signals vascular smooth muscle cells to undergo transformation into osteoblastic-like cells, which secrete large quantities of calcium hydroxyapatite crystals that ultimately result in vascular calcification in the subendothelial and medial layers. Similarly, clinical studies have established that hyperphosphatemia is associated strongly with vascular calcification and cardiovascular mortality among individuals receiving dialysis. High serum phosphate levels also may inhibit calcitriol synthesis, thus stimulating the renin-angiotensin-aldosterone system (RAAS). Such stimulation induces vasoconstriction and salt/water retention, further promoting arterial stiffening.

There is a strong association between vitamin D deficiency and cardiovascular complications, including high blood pressure, vascular calcification, left ventricular hypertrophy (LVH), hypertension, decreased myocardial contractility, and heart failure. In addition to their vascular effects, disturbed calcium and phosphorus also may directly induce myocardial injury and dysfunction. In experimental models of uremia, a high-phosphorus diet combined with parathyroidectomy is associated with dramatic increases in LVH, myocardial fibrosis, and myocyte diameter. An important role for myocardial calcification similarly has been suggested for fetuin-A, a circulating protein synthesized in the liver that acts as a potent inhibitor of tissue mineralization. In studies of the fetuin-A knockout mouse, myocardial calcification occurs in the absence of significant
vascular calcification and is associated with significant changes in cardiac output, ventricular stiffness, and myocardial collagen production and fibrosis.\(^{47}\)

Taken together, these and other data suggest that alterations in calcium and phosphorus metabolism contribute to myocardial dysfunction and CRS in patients with reduced kidney function. Although extensive clinical data are lacking for the role of calcium and phosphorus in CRS, an elevation in calcium-phosphorus product has been reported to be associated strongly with LVH.\(^{48}\) Likewise, elevations in calcium-phosphorus product or its individual components have been described to be associated with increased risk of cardiovascular mortality in the setting of dialysis-dependent CKD.\(^{49-51}\) Data for the association between calcium or phosphorus concentration and heart failure outcomes are limited. However, a handful of studies are consistent with an increased risk of heart failure events among individuals with CKD and elevated calcium or phosphorus concentrations.\(^{51}\)

Role of Vitamin D, PTH, and FGF-23

Given these associations, it seems likely that alterations in vitamin D, PTH, and FGF-23 homeostasis contribute to the development of chronic CRS. Nevertheless, the overall evidence of a direct impact of vitamin D, PTH, and FGF-23 on endothelial and vascular smooth muscle cells remains relatively sparse (although it recently was demonstrated that FGF-23 promotes cardiomyocyte hypertrophy by a klotho-independent pathway).\(^{52}\) In contrast, numerous experimental studies support the concept that this trio of hormones plays a role in the development of myocardial hypertrophy and fibrosis in the setting of CKD. Administering vitamin D analogues, for example, markedly reduces LVH and ventricular collagen accumulation in animal models of CKD,\(^{53}\) while there are similar increases in fibrotic lesions and decreased expression of metalloproteinase inhibitors in vitamin D-receptor knockout mice.\(^{54,55}\)

With regard to PTH, a convincing body of experimental evidence demonstrates that both surgical parathyroidectomy and medical parathyroidectomy (using calcimimetics or activated vitamin D) inhibit myocardial fibrosis in disease models of kidney disease.\(^{56-58}\) Administering FGF-23 also causes LVH, whereas treatment of uremic animals with an FGF-receptor blocker attenuates LVH independent of blood pressure.\(^{52}\) Although the mechanism underlying this finding is uncertain, FGF-23 appears to downregulate renal expression of angiotensin-converting enzyme 2, suggesting an intriguing influence on the RAAS.\(^{59}\)

Clinical studies have confirmed that there are strong associations between this trio of hormones and myocardial pathology. For example, vitamin D deficiency has been associated with the development of LVH in children with CKD.\(^{60}\) Similarly, high PTH levels have been described to be associated independently with LVH and increased concentrations of markers of cardiac damage and dysfunction (eg, troponin T and N-terminal pro-brain natriuretic peptide [NT-proBNP]).\(^{61}\) Abnormalities in PTH and vitamin D levels also have been reported to be associated with increased risk of cardiovascular outcomes, including heart failure.\(^{62}\) Several studies have demonstrated an association of FGF-23 concentrations with the presence of LVH\(^{63,64}\) and a graded association with risk of hospitalization due to heart failure.\(^{65}\)

Role of Anemia and Iron Deficiency

The prevalence of anemia may be >37% in patients with heart failure.\(^{66}\) The severity of anemia has been associated with the degree of risk of ventricular dilation, hospitalization due to heart failure, or overall mortality in patients with dialysis-dependent and earlier stages of CKD.\(^{67,68}\) Similarly, more severe anemia has been associated with an increase in symptoms, reduced exercise capacity, and greater mortality in heart-failure populations.\(^{69}\) Although its role in the development of anemia may be primary, iron deficiency appears to worsen heart failure independently of anemia: a recent study showed that health-related quality of life among patients with heart failure was associated independently with iron stores, but not with the presence of anemia.\(^{70}\)

Mechanisms underlying these associations are incompletely understood; however, the heart is rich in myoglobin, an iron-requiring protein essential in oxygen transport within the cardiomyocyte. In vitro studies suggest that iron deficiency directly impairs myocyte mechanical function\(^{71}\) and that iron deficiency anemia induces LVH\(^{72}\) characterized by myocyte hypertrophy and hypercellularity.\(^{73}\) Anemia also may exacerbate heart failure through a series of downstream events in which tissue hypoxia and nitric oxide release cause peripheral vasodilation and blood pressure decreases. This subsequently causes reduced kidney function, increased renal vasoconstriction, and activation of the RAAS.\(^{74,75}\) In turn, RAAS activation leads to fluid retention and release of NT-proBNP due to myocardial stress, ultimately amplifying progressive kidney and cardiac failure.\(^{76}\)

Finally, iron administration may contribute to heart failure. Normally, <2% of circulating and stored iron is unbound because of its tendency to catalyze oxidative stress reactions. Lele et al\(^{77}\) demonstrated that the heart releases catalytic iron, probably from myoglobin in the setting of acute coronary syndrome. Akrawinatham et al\(^{78}\) have shown that free iron is
released into urine in acute kidney injury, which is followed by secretion of neutrophil gelatinase-associated lipocalin. Although transient, intravenous iron infusions elevate blood levels of free iron, the consequences of which are unknown. In contrast, oral forms of iron are absorbed by natural transport and binding mechanisms and do not result in liberation of catalytic iron in the bloodstream. Thus, absolute levels of circulating iron, its form, and route of administration potentially may play important roles in cardiovascular and renal physiology.

Role of EPO Deficiency and Resistance

EPO, as well as its receptor, is expressed in a number of nonerythropoietic tissues, including cardiac myocytes. There is evidence supporting a role for EPO-EPO receptor signaling in the modulation of physiologic responses to various types of nonerythropoietic tissue injury. For example, EPO deficiency in mice has been shown to induce cardiac hypertrophy and increase left ventricular dilatation whereas exogenous administration of recombinant EPO confers an acute cardioprotective effect during ischemia-reperfusion injury in rats. In humans, several trials have demonstrated that EPO treatment of CKD-associated anemia can induce regression of LVH. However, this effect has not been universal and may be dependent on the severity of anemia. Moreover, multiple clinical trials have demonstrated that exogenous EPO administration is associated with increased risks for the development of heart failure, stroke, and other cardiovascular events. Such trials used high EPO doses in the setting of EPO resistance in an attempt to achieve a higher hemoglobin target, and secondary analyses suggest that EPO in high doses is cardiotoxic. Thus, despite the potential benefits, restricted EPO dosing may be a prudent approach. Whether hemoglobin levels also should be limited in patients with CKD is uncertain. The potential roles of the factors mentioned in this section are summarized in Fig 2.

MANAGING CRS IN CLINICAL PRACTICE

Although nephrology and cardiology societies have developed thorough and up-to-date guidelines for the management of CKD and CVD, there are no formal treatment recommendations for the management of patients with CRS due to a lack of CRS-specific trials. The overlapping interactions of the biochemical factors described in this review illustrate the bidirectional nature of chronic CRS and emphasize the need for multidisciplinary approaches in its treatment.

There is evidence that diuretics and aldosterone antagonists are effective treatments in patients with heart failure, as demonstrated by the DOSE (Diuretic Optimization Strategies Evaluation) study and RALES (Randomized Aldactone Evaluation Study). However, use of these agents in patients with CKD is limited, the result of increased risk for electrolyte disturbances such as hypokalemia or hyperkalemia.

A growing body of research suggests that hyperphosphatemia is a major promoter of cardiovascular
calcification in patients with CKD. Serum phosphate levels in this population can be controlled with oral phosphate binders that, in theory, could improve cardiovascular outcomes. Sevelamer, a nonabsorbable hydrogel, was the first aluminum- and calcium-free phosphate binder for hyperphosphatemia management in dialysis patients; however, evidence that sevelamer decreases calcification is limited. When compared to a calcium-based phosphate binder, sevelamer reduced the progression of coronary and aortic calcification in hemodialysis patients participating in the TTG (Treat to Goal) study. However, when compared to calcium acetate, the progression of arterial calcification was not attenuated by sevelamer in 2 separate studies (the CARE-2 [Calcium Acetate Renagel Evaluation 2] study and the BRIC [Phosphate Binder Impact on Bone Remodeling and Coronary Calcification] study).

Despite a number of studies measuring surrogate outcomes for CVD, to date, the mortality and cardiovascular benefits of phosphate reduction remain unproven. Further, there is no solid evidence to support the superiority of a specific phosphate binder in improving cardiovascular-related outcomes. To wit, the DCOR (Dialysis Clinical Outcomes Revisited) trial, which compared the effects of calcium-based phosphate binders and sevelamer on mortality, morbidity, and hospitalizations in hemodialysis patients, did not find significant benefits to using sevelamer: over the course of 3 years; all-cause (17.7 vs 17.4 deaths/100 patient-years; \(P = 0.9 \)) and cardiovascular mortality (9.0 vs 8.2 deaths/100 patient-years; \(P = 0.4 \)) were very similar for the sevelamer and calcium groups. Comparable trends were noted for first hospitalization and cause-specific multiple hospitalizations.

In regard to vitamin D, a recent post hoc analysis of the PRIMO (Paricalcitol Capsule Benefits in Renal Failure-Induced Cardiac Morbidity) study demonstrated a lesser increase in brain natriuretic peptide level and left atrial index in patients with both diabetes and CKD receiving an oral vitamin D analogue (concomitantly with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers) compared with patients taking placebo. However, results for the primary outcome were negative, with no impact of paricalcitol therapy on LVH. Furthermore, in a more recent study of individuals with CKD stages 3 to 5 and LVH at baseline, 1 \(\mu \)g of paricalcitol daily for 52 weeks had no effect on left ventricular mass index or volume, ejection fraction, or diastolic function compared to placebo. Similarly, the EVOLVE (Evaluation of Cinacalcet Hydrochloride Therapy to Lower Cardiovascular Events) study of 3,883 patients receiving hemodialysis showed that cinacalcet, a calcimimetic agent, had no significant effect on the combined cardiovascular end point despite significant improvement in biochemical parameters of bone and mineral metabolism. However, interestingly, cinacalcet use was associated with an 18% reduction in the risk of hospitalization due to heart failure (95% CI, 0.58-0.99). To our knowledge, no studies have specifically tested these therapies in individuals with CRS.

Patients with chronic heart failure often are iron deficient, even before therapy with an ESA results in gradual iron depletion. Thus, use of intravenous iron before ESA therapy may help reduce the amount of ESA needed. A small number of studies have been conducted in which iron-deficient patients with chronic heart failure received intravenous iron. In the FAIR-HF (Ferinject Assessment in Patients With Iron Deficiency and Chronic Heart Failure) study, intravenous iron significantly improved symptoms of heart failure (odds ratio for improvement by one New York Heart Association functional class, 2.40; 95% CI, 1.55-3.71; \(P < 0.001 \)) and exercise tolerance (6-minute walk test mean study treatment effect, 35 ± 8 m; \(P < 0.001 \)) compared to placebo. However, there was no significant difference in secondary clinical end points, such as first hospitalization for cardiovascular causes or death (hazard ratio [HR], 0.61; 95% CI, 0.32-1.18; \(P = 0.14 \)). The recent CONFIRM-HF (Ferric Carboxymaltose Evaluation on Performance in Patients With Iron Deficiency in Combination With Chronic Heart Failure) trial provides additional evidence of the potential benefits of iron therapy. Randomization to ferric carboxymaltose was associated with significant improvements in the 6-minute walk test, heart failure symptoms, and rate of hospitalization due to heart failure (HR, 0.39; 95% CI, 0.19-0.82).

Conversely, data from TREAT (Trial to Reduce Cardiovascular Events With Aranesp Therapy) demonstrated that in nondialysis patients with diabetes, CKD, and moderate anemia, darbepoetin alfa did not decrease the risk of death or cardiovascular event, congestive heart failure, nonfatal myocardial infarction, stroke, or hospitalization for myocardial ischemia compared to placebo (HR, 1.05; 95% CI, 0.94-1.17; \(P = 0.41 \)). Available clinical evidence does not yet provide substantiated evidence for treating abnormalities associated with mineral bone disease and anemia as a means of improving outcomes of CRS. However, there are intriguing signals that merit further exploration of this area.

CONCLUSION

The ADQI has defined CRS as disorders of the heart and kidney in which dysfunction in one organ may cause dysfunction in the other. As reviewed here,
multiple lines of evidence suggest that in addition to the direct effects of uremia on cardiovascular pathophysiology, secondary changes in bone and mineral metabolism, as well as iron deficiency and anemia, have the potential to be important contributors to the pathogenesis of chronic CRS. However, this connection remains underexplored. Relatively few studies have investigated the potential for manipulating these factors to improve CRS outcomes, and results to date have been equivocal at best. Given that patients with combined CKD and CVD are at much higher risk of mortality than patients with either in isolation, CRS is a major health concern. A better understanding of the roles and interrelated effects of the biochemical factors discussed in this review, as well as more trials aimed at correcting these factors in individuals with or at risk for CRS, may help inform management and treatment strategies for patients with CRS.

ACKNOWLEDGEMENTS

The authors take full responsibility for the content of and the decision to submit this manuscript, but thank Teresa A. Oblak, PhD, CMPP, of Covance Market Access Services Inc, for providing research and administrative support, copyediting, and coordination assistance (Dr Oblak’s effort and publication-related page charges were supported by Keryx Pharmaceuticals, Inc). Support: None.

Financial Disclosure: Dr Charytan has received grant/research support from, and/or acted as a consultant for Keryx, Tengion, Medtronic, Satellite Health Care, Dialysis Clinic, Inc, and the National Institutes of Health (grants U01DK096189, R01HL11831402, and R21DK100772). Dr Fishbane has received grant/research support from Rockwell Medical, Amgen, Keryx, and Deltanoid and acted as a consultant for Rockwell Medical, Keryx, Astra Zeneca, and Akebia. Dr Malyszko has acted as a consultant for Amgen. Dr Goldsmith has participated in speakers’ bureaus for and/or acted as a consultant for Sanofi, Keryx, Fresenius, Merck, Astellas, and Sandoz. Dr McCullough declares that he has no relevant financial interests.

REFERENCES

